- Azodicarbonamide (Azobisformamide)
- General purpose foaming agents

Description

■ UNICELL-D series is well known as the most widely used and effective foaming agent for plastics and rubbers, such as PVC, PP, PE, EVA, ABS, PS, EPDM, SBR, NBR and TPR. UNICELL-D series can be modified to be suitable to almost all of the rubbers and plastics by additives like activators. UNICELL-D series is non-toxic and self-extinguishing material and has relatively high decomposition temperature and evolves a large gas volume. Therefore, it can be used more safely than any other colorless foaming agents and it can produce white, micro-cellular structures.

Decomposition of UNICELL-D series

■ Decomposition mechanism of **UNICELL-D** series (ADCA) is complex and depends on the heating range and the process condition.

$$\begin{array}{c} \mathsf{ADCA}(\mathsf{Azodicarbonamide}) \longrightarrow \mathsf{N}_2 + \mathsf{CO} + \mathsf{NH}_3 + \mathsf{HNCO} \\ \mathsf{2ADCA} \longrightarrow \mathsf{N}_2 + \mathsf{2HNCO} + \mathsf{HDCA} \\ \mathsf{2ADCA} + \mathsf{2H}_2\mathsf{O} \longrightarrow \mathsf{N}_2 + \mathsf{2CO}_2 + \mathsf{2NH}_3 + \mathsf{HDCA} \\ \mathsf{HDCA} \longrightarrow \mathsf{HN} \longrightarrow \mathsf{HN} + \mathsf{NH}_3 \\ \downarrow \qquad \qquad \downarrow \qquad$$

By these reactions, UNICELL-D series is decomposed and evolves several kinds of gases as follows.

Table 1. The volume ratio of evolved gases depending on temperature and the ratio of gases & residues after decomposition.

Gas	Temp	181~198	210~220	250~280		
Evolv	ed gas Volume (ml/g)	185~218	263~322	355~454		
Residue	after decomposition (%)	72.5~76.7	61.3~68.0	46.9~56.5		
Gaseous pro	duct after decomposition (%)	23.3~27.5	32.0~38.7	43.5~53.1		
Evolved Gases	N ₂ (%)	70.8~72.9	53.9~58.8	42.6~48.9		
	CO (%)	26.0~26.5	32.9~33.1	36.2~40.8		
	NH3 (%)	0~0.9	7.4~12.0	8.2~19.1		
	CO ₂ (%)	1.0~1.8	0.7~1.2	2.1~2.2		

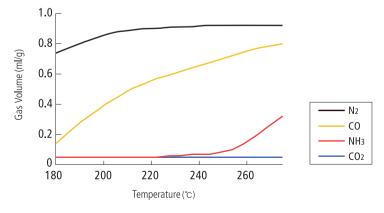


Fig 1. The change of gas components depending on temperature

Properties of UNICELL-D series

Table 2. The physical Properties of UNICELL-D series

Item		Specification										
Grade Name		D200A	D300L	D330	D400	D600	D800	D900	D1100	D1300	D1500	D2500
Chemical Name		Azodicarbonamide (Azobisformamide)										
Appearance		Fine Yellow Powder										
Decomposition Temperature (°C)		202~208										
Gas Volume (ml/gr)		225~250										
Average Particle Size (µm)	Laser	4.8~5.8	5.0~6.0	5.0~5.5	6.2~7.2	8.2~9.0	10.8~11.8	12.0~13.0	14.0~15.0	17.0~19.0	19.0~21.0	27.0~30.0
	Fisher	2.5~2.8	2.6~2.9	2.7~3.0	3.6~3.9	5.7~6.1	7.6~8.0	8.0~8.3	9.6~10.0	$12.6 \sim 13.0$	14.0~17.0	24.0~26.0
Moisture Content (%)		0.3 max.										
Chemical Formula		$H_2N-CO-N=N-CO-NH_2$										
Molecular Weight		116.08										
Specific Gravity (g/cm³ at 25°C)		1.65										
Specific Heat		0.26										
Decomposition heat (kcal/mole)		10										
Solubility (g sample/ 100ml solvent)						MI Ac DN Tol	ASO EK etone AF uene	0.020 4.300 0.015 0.016 5.000 0.012 0.014				
CAS No.		123 - 77 - 3										

Particle size of UNICELL-D series

■ Particle size is a significant factor in determining the speed of decomposition of UNICELL-D series.
As the particle diameter decreases, the surface area increases. Thus the heat transfer to the UNICELL-D series is more effective and faster, and this influences on decomposition speed of UNICELL-D series.

The particle size is selected to provide the proper balance between the curing speed and the decomposition speed of **UNICELL-D** series.

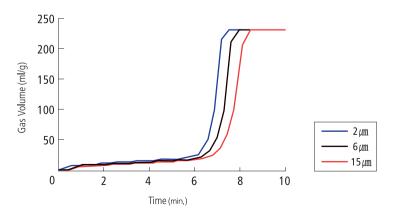


Fig 2. The decomposition behavior of UNICELL-D series at the constant temperature of 200 $^{\circ}\mathrm{C}$